Journal of Organometallic Chemistry, 177 (1979) 385-401
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

REACTIONS OF 1,4-DIAZA-3-METHYLBUTADIEN-2-YLPALLADIUM(II) DERIVATIVES WITH CHLORO-BRIDGED RHODIUM(I) COMPLEXES

BRUNO CROCIANI *, UMBERTO BELLUCO,
Centro Chimica Tecnologia Composti Metallorganici Elementi Transizione C. N.R., Istituto di Chimica Industriale, Via Marzolo 9, Padova (Italy)
and PIERLUIGI SANDRINI

Cattedra di Chimica, Facoltà di Ingegneria, University of Padova (Italy)
(Received March 19th, 1979)

Summary

The reactions of the organometallic 1,4-diazabutadienes, $\mathrm{RN}=\mathrm{C}\left(\mathrm{R}^{\prime}\right) \mathrm{C}(\mathrm{Me})=$ $\mathrm{NR}^{\prime \prime}\left[\mathrm{R}=\mathrm{R}^{\prime \prime}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}, \mathrm{R}^{\prime}=\right.$ trans $-\mathrm{PdCl}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{DAB}) ; \mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$, $\mathrm{R}^{\prime \prime}=\mathrm{Me}, \mathrm{R}^{\prime}=$ trans $-\mathrm{PdCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{DAB}^{\mathrm{I}}\right) ; \mathrm{R}=\mathrm{R}^{\prime \prime}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{Pd}(\mathrm{dmtc})-$ $\left(\mathrm{PPh}_{3}\right)$, dmtc $=$ dimethyldithiocarbamate $\left(\mathrm{DAB}^{\mathrm{II}}\right) ; \mathrm{R}=\mathrm{R}^{\prime \prime}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}, \mathrm{R}^{\prime}=$ $\operatorname{PdCl}($ diphos $)$, diphos $=1,2$-bis(diphenylphosphino)ethane $\left.\left(\mathrm{DAB}^{\mathrm{III}}\right)\right]$ with $[\mathrm{RhCl}(\mathrm{COD})]_{2}(\mathrm{COD}=1,5$-cyclooctadiene, $\mathrm{Pd} / \mathrm{Rh}$ ratio $=1 / 2)$ depend on the nature of the ancillary ligands at the Pd atom in group R^{\prime}. In the reactions with DAB and DAB ${ }^{\text {r }}$ transfer of one PPh_{3} ligand from Pd to Rh occurs yieiding $\left[\mathrm{RhCl}(\mathrm{COD})\left(\mathrm{PPh}_{3}\right)\right]$ and the new binuclear complexes $\left[\mathrm{Rh}(\mathrm{COD})\left\{\mathrm{RN}=\mathrm{C}\left(\mathrm{R}^{\prime \prime \prime}\right)\right.\right.$ $\left.\mathrm{C}(\mathrm{Me})=\mathrm{NR}^{\prime \prime}\right\}$], in which the diazabutadiene moiety acts as a chelating bidentate ligand. Exchange of ligands between the two different metallic centers also occurs in the reaction with $\mathrm{DAB}^{\text {II }}$. In this case, the migration of the bidentate dmtc anion yields $[\mathrm{Rh}(\mathrm{COD})(\mathrm{dmtc})]$ and $\left[\mathrm{Rh}(\mathrm{COD})\left\{\mathrm{RN}=\mathrm{C}\left(\mathrm{R}^{\prime \prime \prime}\right) \mathrm{C}(\mathrm{Me})=\mathrm{NR}^{\prime \prime}\right\}\right]$. In contrast, the reaction with $\mathrm{DAB}^{\mathrm{II}}$ leads to the ionic product [$\mathrm{Rh}(\mathrm{COD}$)(DAB $\left.\left.{ }^{\mathrm{III}}\right)\right]\left[\mathrm{RhCl}_{2}(\mathrm{COD})\right]$, with no transfer of ligands. The cationic complex $\left[\mathrm{Rh}(\mathrm{COD})\left(\mathrm{DAB}^{\mathrm{III}}\right)\right]^{+}$can be isolated as the perchlorate salt from the same reaction ($\mathrm{Pd} / \mathrm{Rh}$ ratio $=1 / 1$) in the presence of an excess of NaClO_{4}. In all the binuclear complexes the coordinated 1,5 -cyclooctadiene can be readily displaced by carbon monoxide to give the corresponding dicarbonyl derivatives. The reaction of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ with DAB and/or $\mathrm{DAB}^{\mathrm{I}}$ yields trinuclear complexes of the type $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(\mathrm{DAB})$, in which the diazabutadiene group acts as a bridging bidentate ligand. Some reactions of the organic diazabutadiene $\mathrm{RN}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})=\mathrm{NR}\left(\mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ are also reported for comparison.
TABLE 1
aNALYTICAL AND PHYSICAL DATA

Compound	Colour	Melting point (${ }^{\circ} \mathrm{C}$) ${ }^{a}$	c^{b} (\%)	H (\%)	N (\%)	Cl (\%)	Molecular weight	A_{M} $\left(\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-2}\right)^{c}$
Ia	Dark-green	178	$\begin{aligned} & 55.2 \\ & (55.41) \end{aligned}$	$\begin{gathered} 4.8 \\ (4.76) \end{gathered}$	$\begin{aligned} & 2,9 \\ & (3,01) \end{aligned}$	$\begin{aligned} & 7.6 \\ & (7,61) \end{aligned}$	$\begin{gathered} 938 \\ (932) \end{gathered}$	
Ib	Green	187	$\begin{gathered} 52,0 \\ (52,90) \end{gathered}$	$\begin{aligned} & 4,7 \\ & (4,80) \end{aligned}$	$\begin{gathered} 3,3 \\ (3,33) \end{gathered}$	$\begin{gathered} 8,6 \\ (8,44) \end{gathered}$	$\begin{gathered} 826 \\ (8.40) \end{gathered}$	
IIa	Red	:98	$\begin{aligned} & 50.1 \\ & (50,51) \end{aligned}$	$\begin{gathered} 3.8 \\ (3.67) \end{gathered}$	$\begin{aligned} & 3,1 \\ & (3,18) \end{aligned}$	$\begin{aligned} & 8,1 \\ & (8,06) \end{aligned}$	$\begin{aligned} & 940 \\ & (879.8) \end{aligned}$	
IIb	Yellow-orange	200	$\begin{gathered} 47.2 \\ (47.26) \end{gathered}$	$\begin{aligned} & 3.7 \\ & (3.58) \end{aligned}$	$\begin{gathered} 3.5 \\ (3.56) \end{gathered}$	$\begin{aligned} & 8.9 \\ & (9.00) \end{aligned}$		
IIIa	Dark-green	228	$\begin{gathered} 53.9 \\ (54,10) \end{gathered}$	$\begin{gathered} 4,9 \\ (4.71) \end{gathered}$	$\begin{gathered} 2.4 \\ (2.47) \end{gathered}$	$\begin{aligned} & 6.5 \\ & (6.26) \end{aligned}$		79.7
IIIb	Dark-green	225-234	$\begin{aligned} & 52.1 \\ & (51.45) \end{aligned}$	$\begin{gathered} 5.4 \\ (5,31) \end{gathered}$	$\begin{gathered} 4.6 \\ (4.61) \end{gathered}$	$\begin{gathered} 6.0 \\ (5.8 .4) \end{gathered}$		87.3
IVa	Dark-blue	189	$\begin{gathered} 49.5 \\ (50.04) \end{gathered}$	$\begin{gathered} 4.0 \\ (3.83) \end{gathered}$	$\begin{gathered} 2,5 \\ (2.59) \end{gathered}$	$\begin{gathered} 6.7 \\ (6.56) \end{gathered}$		77.8
IVb	Dark-brown	200	$\begin{gathered} 42.8 \\ (43.30) \end{gathered}$	$\begin{gathered} 3.7 \\ (3.63) \end{gathered}$	$\begin{aligned} & 4,9 \\ & (5,05) \end{aligned}$	$\begin{gathered} 6.5 \\ (5.39) \end{gathered}$		91.3
Va	Red	168	$\begin{aligned} & 61.0 \\ & (51.22) \end{aligned}$	$\begin{gathered} 3.7 \\ (3.54) \end{gathered}$	$\begin{gathered} 2,0 \\ (2.09) \end{gathered}$	$\begin{aligned} & 8.0 \\ & (7,95) \end{aligned}$	$\begin{gathered} 10366^{d} \\ (1336.5) \end{gathered}$	
Vb	Red-orange	167	$\begin{gathered} 49.3 \\ (49.22) \end{gathered}$	$\begin{gathered} 3.6 \\ (3,48) \end{gathered}$	$\begin{gathered} 2,2 \\ (2,25) \end{gathered}$	$\begin{gathered} 8,6 \\ (8,54) \end{gathered}$	$\begin{gathered} 1016^{\mathrm{o}} \\ (1244.4) \end{gathered}$	

[^0]
Introduction

In previous papers we described the preparation of organometallic derivatives of palladium(II) containing a σ-bonded 1,4-diaza-3-methylbutadien-2-yl-group * [1-5]. The compounds $R N=\left(R^{\prime}\right) C(M e)=N R^{\prime \prime}$ may either (a) have the same substituents on both imino N atoms $\left(\mathrm{R}=\mathrm{R}^{\prime \prime}=\mathrm{Ph}, p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}, p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right.$, $\mathrm{C}_{6} \mathrm{H}_{11}$) with different ligands and configurations at the Pd atom of the group $R^{\prime}\left[R^{\prime}=\right.$ trans $-\mathrm{PdCl}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{PdCl}(\mathrm{diphos}), \mathrm{Pd}(\mathrm{dmtc})\left(\mathrm{PPh}_{3}\right)$; diphos $=1,2$-bis $($ diphenylphosphino) ethane, dmtc = dimethyldithiocarbamate], or (b) have different substituents on the two imino N atoms $\left(\mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}, \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $\mathrm{R}^{\prime \prime}=\mathrm{Me}$, $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$, respectively) with the same group $\mathrm{R}^{\prime}\left[\mathrm{R}^{\prime}=\right.$ trans $\left.-\mathrm{PdCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. We have also found that the diazabutadiene moiety acts as a chelating bidentate ligand towards metal ions of the first transition series to give the binuclear complexes $\left[M X_{2}\left\{R N=C\left(R^{\prime}\right) C(M e)=N R^{\prime \prime}\right\}\right](M=F e, C o, N i, C u, Z n ; X=C l$, $\mathrm{Br})[3,4]$. Studies on the coordinating abilities of this new type of ligands have recently been extended to metal ions of the later transition series [5]. In this context, we report here some reactions of the organometallic diazabutadienes with chloro-bridged dimeric rhodium(I) complexes.

Results and discussion

The organometallic α-diimines $\mathrm{RN}=\mathrm{C}\left(\mathrm{R}^{\prime}\right) \mathrm{C}(\mathrm{Me})=\mathrm{NR}^{\prime \prime}\left[\mathrm{R}^{\prime}=\operatorname{trans}-\mathrm{PdCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ react very rapidly with $[\mathrm{RhCl}(\mathrm{COD})]_{2}(\mathrm{COD}=1,5$-cyclooctadiene) as shown in eqn. 1 . In this reaction one PPh_{3} ligand migrates from DAB and/or DAB to a

Rh center of the dimer [$\mathrm{RhCl}(\mathrm{COD})]_{2}$ yielding the complex [$\left.\mathrm{RhCl}(\mathrm{COD})\left(\mathrm{PPh}_{3}\right)\right]$, which can be isolated and identified by elemental analysis and by IR and ${ }^{1} \mathrm{H}$ NMR spectra [6]. A $\mathrm{Pd} / \mathrm{Rh}$ ratio of $1 / 2$ is required to drive the reaction to completion. When a $\mathrm{Pd} / \mathrm{Rh}$ ratio of $1 / 1$ is used, only 50% of the starting diazabutadiene ligand reacts, according to eqn. 1 , and the remaining 50% is left unchanged.

The binuclear complexes I are non-conducting monomeric compounds (Table 1). The formulation of I is mainly based on spectral data and chemical reactions. The coordination of COD to rhodium (I) is indicated by reactions 2 and 3 with PPh_{3} and CO .

In reaction 2 the $\mathrm{Rh}(\mathrm{COD})$ unit is completely displaced from the diazabutadiene moiety to give the complex [$\left.\mathrm{RhCl}(\mathrm{COD})\left(\mathrm{PPh}_{3}\right)\right]$. One PPh_{3} molecule reacts also at the Pd atom yielding DAB and/or DAB^{1} (i.e., the starting materials

[^1]
of reaction 1). In reaction 3 , the coordinated $C O D$ is quantitatively displaced by carbon moncxide to give the dicarbonyl derivatives II-a typical reaction of the cationic complexes $[\mathrm{Rh}(\mathrm{COD})(\mathrm{L}-\mathrm{L})]^{+}(\mathrm{L}-\mathrm{L}=$ chelating bidentate N -donor ligand) [7].

Two strong $\nu(C O)$ bands are observed in the range $2100-2027 \mathrm{~cm}^{-1}$ for the dicarbonyl compounds II. All the binuclear complexes I and II are characterized by two metal-chloride stretching vibrations in the range $308-276 \mathrm{~cm}^{-1}$, which are assigned to $\nu(\mathrm{PdCl})$ bands of two mutually cis chlorides in trans position to

TABLE 2
CHARACTERISTIC IR BANDS $\left(\mathrm{em}^{-1}\right)^{a}$

Compound	$\nu(\mathrm{CO})$	$\nu(\mathrm{CN})^{b}$	$\nu(\mathrm{MCl})^{\text {c }}$	Other bands	
Ia		$\begin{aligned} & 1605 \mathrm{~s} \text { or } 1584 \mathrm{~m} \text {; } \\ & 1526 \mathrm{~m} \end{aligned}$	299s; 276 ms		
Ib		3604 ms or 1587 w ; 1521 m	308ms; $\mathbf{2 8 5 m s}$		
IIa	2086s; 2027s (2095s; 2038s)	$\begin{aligned} & 1604 \mathrm{~s} \text { or } 1582 \mathrm{~m} \text {; } \\ & 1515(\mathrm{sh}) \end{aligned}$	306m; 285m		
IIb	2087:2038s ${ }^{\text {d }}$	$\begin{aligned} & 1602 \mathrm{~ms} \text { or } 1583 \mathrm{~m} \text {; } \\ & 1510(\mathrm{sh}) \end{aligned}$	298m; 276m		
IIIa		$\begin{aligned} & 1605 \mathrm{~ms} \text { or } 1586 \mathrm{~m} \text {; } \\ & 1520(\mathrm{sh}) \end{aligned}$	304m	$\begin{aligned} & \text { 1090s(br) } \\ & 621 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \nu(\mathrm{ClO}) \\ & \delta(\mathrm{ClO}) \end{aligned}$
IIfb		1608 s or 1583 m		$\begin{aligned} & \text { 1090s(br) } \\ & \text { 625s } \end{aligned}$	ν (CIO) $\delta(\mathrm{ClO})$
IVa	$\begin{gathered} \text { 2091s: 2037s } \\ (2097 s: 2040 s) \end{gathered}$	$\begin{aligned} & 1605 \mathrm{~ms} \text { or } 1584 \mathrm{~m} \text { : } \\ & 1510(\mathrm{sh}) \end{aligned}$	296m	$\begin{aligned} & 1095 \mathrm{~s}(\mathrm{br}) \\ & 624 \mathrm{~s} \end{aligned}$	$\nu(\mathrm{ClO})$ $\delta(\mathrm{ClO})$
IVb	$\begin{gathered} 2096 s ; 2047 \mathrm{~s} \\ (2100 \mathrm{~s} ; 2045 \mathrm{~s}) \end{gathered}$	1607 s or 1583 m		$\begin{aligned} & 1100 \mathrm{~s}(\mathrm{br}) \\ & 626 \mathrm{~s} \end{aligned}$	$\nu(\mathrm{ClO})$ $\delta(\mathrm{ClO})$
Va	$\begin{aligned} & 2100 \mathrm{~s}: 2066 \mathrm{~s} \\ & 2040 \mathrm{~s} ; 1986 \mathrm{~s} \\ & (2100 \mathrm{~s}: 2073 \mathrm{~s}: \\ & 2044 \mathrm{~s}: 1992 \mathrm{~s}) \end{aligned}$	1601 ms or 1583 m	$\begin{aligned} & 320 \mathrm{~m} ; 304 \mathrm{~m} ; \\ & 295 \mathrm{~m} \end{aligned}$		
Vb	$\begin{array}{r} 2090 \mathrm{~s} ; 2061 \mathrm{~s} ; \\ 2032 \mathrm{~s} ; 1978 \mathrm{~s} \\ (2095 \mathrm{~s} ; 2072 \mathrm{~s} ; \\ 2038 \mathrm{~s} ; 1992 \mathrm{~s}) \end{array}$	1600 ms or 1585 m ; 1510(sh)	327 m : 302ms		

[^2]ligandis of high trans influence, such as PPh_{3} and the σ bonded 1,4-diaza-3-methyl-butadien-2-yl group [3-5] (Table 2).

The presence of a chelating diazabutadiene group in I and II is also supported by the appearance of characteristic CT bands in the electronic spectra, as will be discussed later.

A fast migration of ligands also occurs in the reaction with $R N=C\left(R^{\prime}\right) C(M e)=$ $N R^{\prime \prime}\left[R^{\prime}=\operatorname{Pd}(\mathrm{dmtc})\left(\mathrm{PPh}_{3}\right)\right]$ (4).

The product Ia can be isolated and characterized as previously described. The complex [Rh(COD)(dmtc)] cannot be separated analytically pure, but its formation is confirmed by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture in CDCl_{3}, with that of an authentic sample independently prepared (see Experimental).

In contrast to $\mathrm{DAB}, \mathrm{DAB}^{\mathrm{I}}$ and $\mathrm{DAB}^{\text {II }}$, the diazabutadiene $\mathrm{RN}=\mathrm{C}\left(\mathrm{R}^{\circ}\right) \mathrm{C}(\mathrm{Me})=$ $\mathrm{NR}^{\prime \prime}\left[\mathrm{R}^{\prime}=\mathrm{PdCl}(\right.$ diphos $\left.)\right]$ reacts with $[\mathrm{RhCl}(\mathrm{COD})]_{2}$ with no exchange of ligands between the different metal centers (5).

$R=R^{\prime \prime}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\left(\mathrm{DAB} \mathrm{BH}^{\mathrm{HI}}\right)$
The ionic product of this reaction cannot be isolated pure even after repeated precipitations from a variety of solvents. However, it can be characterized in the clear dark-green solutions resulting from the reactions in MeOH and CDCl_{3} by conductivity measurements and ${ }^{1} \mathrm{H}$ NMR spectroscopy respectively. In particular the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture in CDCl_{3} is a superposition of the individual spectra of the anionic and cationic complexes independently prepared (see Experimental). The anion $\left[\mathrm{RhCl}_{2}(\mathrm{COD})\right]^{-}$is characterized by the signal of the equivalent olefinic protons at 4.15 ppm , whereas in the cation $\left[\mathrm{Rh}(\mathrm{COD})\left(\mathrm{DAB}^{\mathrm{II}}\right)\right]^{+}$the same signal appears as an unresolved multiplet in the range $3.7-3.4 \mathrm{ppm}$, the integration ratio of the two peaks being $\sim 1 / 1$. A similar ionic compound, $[\mathrm{Rh}(\mathrm{COD})($ bipy $)]\left[\mathrm{RhCl}_{2}(\mathrm{COD})\right]$ (bipy $=2,2^{\prime}$ bipyridine), was obtained from the reaction of $[\mathrm{RhCl}(\mathrm{COD})]_{2}$ with bipy [8].

The cationic complex $\left[\mathrm{Rh}(\mathrm{COD})\left(\mathrm{DAB}^{\mathrm{III}}\right)\right] \mathrm{ClO}_{4}$ (IIIa) can be prepared in good yield from reaction (6).

As can be seen, the organometallic ligand $\mathrm{DAB}^{\text {III }}$ exhibits the same reactions as the organic diazabutadiene DAB $^{\text {IV }}$. All the complexes III and IV are uni-univalent electrolytes in MeOH solution. The presence of two mutually cis CO ligands in IV is confirmed by IR spectra (in the solid and in solution) and by

measurements of the volumr of gas evolved upon treatment with an excess of diphos [9].

The reaction of $\mathrm{DAB}_{\mathrm{a}}$, ijor DAB^{1} with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ is reported in eqn. 7 .

At variance with reactions 1,4 and 5 , this reaction yield the trinuclear complexes V, in which the 1,4-diaza-3-methylbutadien-2-yl group acts as a bidentate bridging ligand on two $\mathrm{Rh}(\mathrm{I})$ centers. The IR and ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CDCl_{3}, indicate a very fast and quantitative formation of V when a $\mathrm{Pd} / \mathrm{Rh}$ ratio of $1 / 2$ is used. The IR spectra of V in the solid and in solution show four intense $\nu(\mathrm{CO})$ bands in the range 2100-1978 cm^{-1}, due to two $\mathrm{RhCl}(\mathrm{CO})_{2}$ units with cis CO ligands.

Although in the fár IR region the $\nu(\mathrm{PdCl})$ and $\nu(\mathrm{RhCl})$ bands cannot be distinguished from each other, the $\nu(\mathrm{MCl})$ vibrations are found at significantly higher frequencies, $327-295 \mathrm{~cm}^{-1}$, than $\nu(\mathrm{PdCl})$ of the free ligands (265 and $255 \mathrm{~cm}^{-1}$ for DAB and DAB ${ }^{I}$, respectively $[1,41)$ and $\nu\left(\mathrm{Rh}^{-} \mathrm{Cl}_{\text {bridging }}\right)$ of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}\left(284 ; 274 \mathrm{~cm}^{-1}\right.$ [10]), owing to the reduced trans influence of the σ bonded 1,4-diaza-3-methylbutadien-2-yl group upon coordination $[3,4]$ and to the splitting of chloro-bridges of the dimeric rhodium(I) complex [10].

The structure of V has not been determined by an X-ray analysis. However, from the ${ }^{1} H$ NMR spectra it appcars that the coordinated 1,4-diazabutadiene group is present in solution in only one of the possible configurations, probably that involving the least steric hindrance, with the $\mathrm{C}=\mathrm{N}$ bonds in trans position.

Related polynuclear complexes with bridging bis(imino) ligands have been obtained in the reactions of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ with the organic diazabutadiene $\mathrm{t}-\mathrm{BuN}=\mathbf{C H C H}=\mathrm{NBu}-\mathrm{t}$ [11] and with the organometallic compounds $[\mathrm{Hg}\{\mathrm{C}$ ($\left.\left.\left.=\mathrm{N}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{OEt}\right\}_{2}\right]$ and $\left[\mathrm{Pt}\left\{\mathrm{C}\left(=\mathrm{N}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{OMe}\right\}_{2}\right.$ (diphos)], containing two mono-imino groups σ bonded to the central metal [12,13].

The complexes V are non-conducting in methanol and slightly dissociated in 1,2-dichloroetane solutions. The complex Va reacts relatively slowly (ca. 90 min for completion) with an equimolar amount of PPh_{3} to give the well-known derivative trans-[$\left.\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and the compound IIa, identified in solution
on the basis of its IR and ${ }^{1} \mathrm{H}$ NMR spectra. On the other hand, when DAB is treated with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(\mathrm{Pd} / \mathrm{Rh}$ ratio $1 / 1)$, only 50% of the diazabutadiene ligand reacts immediately according to eqn. 7. On standing, a subsequent slower reaction takes place between Va and the unreacted $D A B$, yielding the complex Ila as the major product, and a mixture of minor derivatives among which trans$\left[\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is again detected. This behaviour may be accounted for by the following series of reactions (8), where the initial step is assumed to be a slow dissociation of the trinuclear complex Va to IIa and the labile species $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right] *$.

(II a)
other projucts
The binuclear complex $\left[(\mathrm{CO})_{2} \mathrm{ClRh}\{\mathrm{t}-\mathrm{BuN}=\mathrm{CHCH}=\mathrm{NBu}-\mathrm{t}\} \mathrm{RhCl}(\mathrm{CO})_{2}\right]$ was reported to react with an equimolar amount of PPh_{3} to yield [$\{\mathrm{t}-\mathrm{BuN=CHCH}=$ $\left.\mathrm{NBu}-\mathrm{t}\} \mathrm{RhCl}(\mathrm{CO})_{2}\right]$ and the known compound $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right]$, i.e., a species containing only one PPh_{3} molecule per Rh atom [11].

The slow dissociation of Va to IIa is confirmed by the ${ }^{1} \mathrm{H}$ NMR spectra of a pure sample of Va in CDCl_{3} at various times, as shown in Fig. 1. The spectra (a) and (b) were recorded 10 min and 2 h . after dissolution of Va. The stronger singlet at 2.42 ppm is due to the 3 -methyl group of the coordinated 1,4 -diaza-3-methylbutadien-2-yl moiety of Va, while the weak but diagnostic singal at 2.96 ppm is due to the corresponding 3 -methyl group of IIa. The relative intensity of the two peaks varies slowly with time until after ca. 2 h no appreciable change is observed. At this point, the integration gives a molar ratio IIa/Va \sim $1 / 10$. The spectrum (c) is reported for comparison, and refers to an equimolar mixture of Va and PPh_{3} when reaction 8 a is completed.

The reactions of the trinuclear complex Va , and the dependence of reactions and 7 on the molar ratio of the reactants suggest a mechanism for reaction 1 involving a rapid formation of labile intermediated of the type V, which would decay to the final products with an intramolecular migration of ligands:

[^3]

Fig. 1. 1 H NMR spectra in the range $3.5-2.0$ ppm. (a) Compound Va 10 min after dissolution: (b) compound Va $2 h$ after dissolution; (c) equinolar mixture Va/PPh h_{3} when reaction Ba is completed.

The transfer of PPh_{3} from Pd to Rh coordinated to the nitrogen atom at position 4 on the diazabutadiene chain would produce the compound [$\mathrm{RhCl}(\mathrm{COD}$)(PPh_{3})], and the resulting fragment would rearrange to the final products I by chelation to Rh coordinated to nitrogen at position 1.

The nature of the products of reaction 7 rules out an alternative mechanism based on a preliminary dissociation of $D A B$ and/or $D A B^{I}$ with release of free PPh_{3}, which would react with the dimer [$\left.\mathrm{RhCl}(\mathrm{COD})\right]_{2}$ to give $[\mathrm{RhCl}(\mathrm{COD})$ $\left.\left(\mathrm{PPh}_{3}\right)\right]$. Dissociations of this type have been reported for the complexes trans$\left[\mathbf{P d C l}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Y}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{Y}=\mathbf{H}, o-\mathrm{CN}, m-\mathrm{CN}, p-\mathrm{CN})$ containing a σ bonded benzyl group [15].

The rhodium(I) complexes $\mathrm{I}-\mathrm{V}$ are generally moderately stable compounds either in the solid or in the solvents used for their preparation and characterization. Only the dicarbonyl derivative IIb cannot be studied in solution because

TABLE 3
${ }^{1}{ }^{1}$ NMR SPECTRA ${ }^{a}$

[^4]it decomposes rather quickly with loss of carbon monoxide.
The dicarbonyl complexes IIa, IVa and IVb do not dissociate with release of carbon monoxide in halogenated solvents even when dinitrogen is bubbled through the solution for a long time. However, upon addition of a small amount of acetonitrile to a 1,2-dichloroethane solution (acetonitrile/1,2-dichloroethane $1 / 9$, v/v) the equilibrium (9) is established.

$\mathrm{N}-\mathrm{N}=$ chelating diazabutadienc ligand; $\mathrm{S}=$ acetonitrile
The position of the equilibrium shifts to the right or to the left when N_{2} or CO, respectively, is bubbled through the solution. The dicarbonyl species predominates in the solution of IIa and IVa, whereas tiic monocarbonyl species predominates in the solution of IVb, owing probably to a better shielding of the rhodium(I) center by the bulky diazabutadiene ligands in IIa and IVa. Electronic effects seem to play a minor role, as can be inferred from the similarity of the CO stretching frequencies.

The coordination of the 1,4-diaza-3-methylbutadien-2-yl moiety to rhodium(I) affects the typical IR and ${ }^{1} \mathrm{H}$ NMR bands of this group in the same way as the coordination of the transition metal ions in so far as these have been investigated [3-5]. The IR spectra of the free organometallic ligands DAB-DAB ${ }^{\text {III }}$ are characterized by two $\nu(C=N)$ bands in the range $1640-1550 \mathrm{~cm}^{-1}$. Upon coordination these bands are shifted to lower frequency and markedly reduced in intensity, so that when the N-substituents are the $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$ groups they can hardly be observed and/or assigned because of the strong absorptions of the para-substituted phenyl ring around 1600 and $1500 \mathrm{~cm}^{-1}$. This is the case for all the rhodium(I) derivatives reported in Table 2, either containing a chelating or a bridging diazabutadiene ligand.

The ${ }^{1} \mathrm{H}$ NMR signals which are most influenced by coordination are those of the methyl group at position 3 on the diazabutadiene ligand and of the phenyl protons of $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe} N$-substituents. The latter usually appear as $A_{2} \mathrm{~B}_{2}$ (or $A A^{\prime} B B^{\prime}$) symmetrical multiplets having different patterns and chemical shifts according to the position of the $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$ groups [4]. In many binuclear rhodium(I) compounds these signals partially overlap with the intense PPh_{3} resonances as to prevent any detailed assignment. The $A_{2} B_{2}$ (or $A A^{\prime} B B^{\prime}$) multiplets are more easily observed for the trinuclear complexes V and the mononuclear derivatives IIIb and IVb (see Table 3).

In general, the signal of the methyl group at position 3 undergoes a marked down-field shift upon coordination as the result of various factors, such as inductive effects, the formation of a delocalised π electron system on the 5 -membered ring and changes in the ligand configuration [3-5]. In complexes of the type:

the chemical shift of the methyl group, $\delta(\mathrm{C}-\mathrm{Me})$, depends on the ancillary ligands at the rhodium(I) center and on the nature of substituent R^{\prime}. For the dicarbonyl derivatives IIa, IVa and IVb the signal $\delta(\mathrm{C}-\mathrm{Me})$ occurs at lower field ($\sim 0.2 \mathrm{ppm}$) relative to that of the corresponding COD analogues Ia, IIIa and IIIb.

The influence of the R^{\prime} group can be seen in the series of COD complexes IIIa, IIIb and Ia, all having $\mathrm{R}=\mathrm{R}^{\prime \prime}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$. The $\delta(\mathrm{C}-\mathrm{Me})$ signal falls at 2.13 ppm for IIIa $\left[\mathrm{R}^{\prime}=\mathrm{PdCl}(\right.$ diphos $\left.)\right]$, at 2.12 ppm for IIIb $\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, but at considerably lower field, 2.77 ppm , for Ia $\left[\mathrm{R}^{\prime}=\right.$ cis- $\left.-\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)\right]$. A similar trend is observed for the corresponding series of dicarbonyl derivatives IVa, IVb and IIa. A marked deshielding effect of the group $\mathrm{R}^{\prime}=$ cis $-\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)$ was also observed for the binuclear complexes [5].

$$
\begin{aligned}
& M=P d ; \delta(C-M e)=2.88 \mathrm{ppm} \\
& M=P t ; \delta(C-M e)=2.60 \mathrm{ppm}
\end{aligned}
$$

$R=R^{\prime \prime}=p-C_{6} H_{4} O M e$
In the 1,5-cyclooctadiene compounds I and III, the signals of the olefinic protons appear as an unresolved multiplet in the range $3.9-3.3 \mathrm{ppm}$, at significantly higher field than the corresponding signals (ca. 4.5 ppm) of the cationic complexes $[\mathrm{Rh}(\mathrm{COD})(\mathrm{L}-\mathrm{L})]^{+}(\mathrm{L}-\mathrm{L}=2$-aminomethylpyridine; 2,2'-bipyridine; 1,10-phenanthroline) [16].

TABLE 4
${ }^{13}$ C NMR SPECTRA
In $\mathrm{CD}_{2} \mathrm{Cl}_{2} ; \delta$ (ppm) from TMS.

DABIV	IIIb	Diazabutadiene carbons
169.0	181.0	c_{α}
15.58	20.28	C_{β}
144.9	138.18	C(1)
121.11	322.51	C(2,6)
114.86	114.74	C(3,5)
157.16	158.94	C(4)
56.01	55.73	OCH_{3}
		1,5-Cyclooctadiene carbons
	88.79	$=\mathrm{CH}$
	$\begin{aligned} & (1 . J(\mathrm{RhC}) 11.9 \mathrm{~Hz}) \\ & 30.42 \end{aligned}$	CH_{2}

The ${ }^{1} H$ NMR spectra of the mononuclear complexes IIIb and IVb and the ${ }^{13} \mathrm{C}$ NMR spectra of IIIb and $\mathrm{DAB}{ }^{I V}$ indicate that this ligand is symmetrically coordinated to rhodium(I) with two σ bonds through the imino nitrogen atoms.

The ${ }^{13} \mathrm{C}$ NMR spectra in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ are listed in Table 4.

The marked deshielding of C_{α} and $\mathrm{C}_{\boldsymbol{\beta}}$ carbons upon coordination indicates that σ-donation is predominant in the rhodium (I)-DAB ${ }^{I V}$ bond [17]. In particular, the down-field shift (12 ppm) of the C_{α} signal is also indicative of σ N-bonded diazabutadiene ligands [11,17,18].

The electronic spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution ($700-250 \mathrm{~mm}$) are shown in Fig. 2 for 1,5-cyclooctadiene derivatives Ia, Ib, IIIb, and in Fig. 3 for the dicarbonyl compounds IIa, IVb. For the mononuclear complexes IIIb and IVb the bands at wavelengths $>300 \mathrm{~nm}$ are essentially due to electronic transition between the rhodium(I) d levels and the antibonding orbitals of the conjugated double bond system of the chelating diazabutadiene DAB ${ }^{I V}$ (CT bands), as suggested by the marked dependence on the ancillary ligands (COD or CO) at the rhodium(I) center and by solvatochromic effects. (The band maxima shift to higher frequency in more polar solvents, such as methanol and/or acetonitrile [17,19]). In the case of the dicarbonyl complex IVb, charge-transfer bands $d \rightarrow \pi^{\star}(\mathrm{CO})$ may also be present in the spectral range investigated [20].

Except for some variations in the band maxima, mainly due to the different N - and C-substituents in the $N=C C=N$ group, the spectra of the 1,5-cyclooctadiene (Ia, Ib) and dicarbonyl (IIa) binuclear complexes are similar to those of

 and IIIb (————.

Fig. 3. Electronic spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of the dicarbonyl complexes $\mathrm{IIa}(-ー-\longrightarrow)$ and $\mathrm{IVb}(-\longrightarrow)$.
the corresponding mononuclear analogues IIIb and IVb, respectively, which unambiguously contain a N-chelating diazabutadiene ligand. This indicates that the same 5 -membered metallocycle chromophore is present in both series of compounds and lends further support to the proposed structure for the zwitterionic complexes I and II.

Experimental

The complexes $[\mathrm{RhCl}(\mathrm{COD})]_{2}$ and $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ were prepared by standard methods $[8,21]$. The 1,4 -diazabutadiene ligands $\mathrm{DAB}-\mathrm{DAB}^{I V}$ were prepared and purified by published methods [1-5,22]. All other chemicals were reagent grade, and used without further purification. Infrared spectra were recorded with Perkin-Elmer 457 ($4000-250 \mathrm{~cm}^{-1}$) and Beckman IR 11 (400-120 cm^{-1}) instruments. Hexachlorobutadiene mulls and NaCl plates were used in the range $4000-1300 \mathrm{~cm}^{-1}$ and Nujol mulls and CsI or thin polythene discs in the range $1700-120 \mathrm{cin}^{-1}$.

Electronic spectra in solution were recorded with a Bausch \& Lomb Spectronic 210 UV spectrophotometer in the range $700-250 \mathrm{~nm}$ at $25^{\circ} \mathrm{C}$, using quartz cells of 1 cm path length. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Varian EM-390 90 MHz instrument and ${ }^{13} \mathrm{C}$ NMR spectra with a Bruker WP 60 FT.

Molecular weights were measured with a Mechrolab osmometer at $37^{\circ} \mathrm{C}$ in 1,2-dichloroethane. Elemental analyses were carried out by A. Berton and G. Biasoli at the Microanalytical Laboratory, Laboratorio Radioelementi C.N.R., Padova. All reactions and physical measurements in solution were carried out in deaerated solvents under N_{2}. Owing to the moderate stability of the new rhodium(I) complexes prepared in this work, fresh solutions of recently prepared samples were always used.

Reactions of $[R h C l(C O D)]_{2}$ with $R N=C\left(R^{\prime}\right) C(M e)=N R^{\prime \prime}\left(R^{\prime}=\right.$ trans- $P d C l\left(P P h_{3}\right)_{2}$; $\left.R=R^{\prime \prime}=p-C_{6} H_{4} O M e(D A B) ; R=p-C_{6} H_{4} O M e, R^{\prime \prime}=M e\left(D A B^{1}\right)\right)$
(a) Pd/Rh ratio 1/2. A solution of the ligand DAB ($0.474 \mathrm{~g}, 0.5 \mathrm{mmol}$) in ca. 50 ml of CHCl_{3} was treated with $[\mathrm{RhCl}(\mathrm{COD})]_{2}(0.247 \mathrm{~g}, 0.5 \mathrm{mmol})$. The colour immediately changed from golden-yellow to dark-green. After stirring for 1 h , the mixture was treated with charcoal, the filtrate was concentrated to small volume at reduced pressure and the product, Ia, was precipitated with diethyl ether. The compound was purified by reprecipitation from the same solvents (yield $0.400 \mathrm{~g}, 86 \%$ based on the theoretical amount). The mother liquor from the first precipitation was concentrated to small volume. Addition of n-hexane gave a yellow precipitate (0.17 g), identified as [$\left.\mathrm{RhCl}(\mathrm{COD})\left(\mathrm{PPh}_{3}\right)\right]$ on the basis of its IR spectrum ($\nu(\mathrm{Rh}-\mathrm{Cl}) 285 \mathrm{~cm}^{-1}$), ${ }^{1} \mathrm{H}$ NMR specrrum (olefinic protons resonances $\delta(-\mathrm{CH}=) 6.1$ and 3.2 ppm [6]) and elemental analysis (Found: C, $61.3 ; \mathrm{H}, 5.5 ; \mathrm{Cl}, 7.1$. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{27}$ ClPRh: $\mathrm{C}, 61.37 ; \mathrm{H}, 5.35 ; \mathrm{Cl}, 6.97 \%$.)

The reaction of $\mathrm{DAB}^{1}(0.428 \mathrm{~g}, 0.5 \mathrm{mmol})$ with $[\mathrm{RhCl}(\mathrm{COD})]_{2}(0.247 \mathrm{~g}$, 0.5 mmol) was carried out as ciescribed above for DAB to give the green product Ib $(0.36 \mathrm{~g}, 86 \%)$ and $\left[\mathrm{RhCl}(\mathrm{COD})\left(\mathrm{PPh}_{3}\right)\right](0.16 \mathrm{~g})$.
(b) Pd/Rh ratio 1/1. When the reaction of DAB with $[\mathrm{RhCl}(\mathrm{COD})]_{2}$ was carried out with a $\mathrm{Pd} / \mathrm{Rh}$ ratio of $1 / 1$, the IR spectrum of the reaction mixture in CHCl_{3} showed the presence of unreacted DAB , characterised by two $\nu(\mathrm{C}=\mathrm{N})$ bands at 1620 and $1560 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the same reaction mixture in CDCl_{3} indicated the presence of three compounds, [$\mathrm{RhCl}(\mathrm{COD})\left(\mathrm{PPh}_{3}\right)$], Ia and DAB in a molar ratio of ca. $1 / 1 / 1$, the latter two complexes being easily identified by their characteristic $\delta(\mathrm{C}-\mathrm{Me})$ signals at 1.29 and 2.77 ppm , respectively [1].

Reactions of the complexes I with PPh_{3}

The binuclear complexes I (0.1 mmol) were treated with PPh_{3} ($0.053 \mathrm{~g}, 0.2$ mmol) in 1 ml of CDCl_{3}. The colour changed from dark-green to yellow and the ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixtures indicated a nearly quantitative formation of DAB (or $\mathrm{DAB}^{\mathrm{I}}$) and $\left[\mathrm{RhCl}(\mathrm{COD})\left(\mathrm{PPh}_{3}\right)\right]$.

Reactions of the complexes I with CO

The binuclear complex Ia ($0.466 \mathrm{~g}, 0.5 \mathrm{mmol}$) was suspended in 10 ml of a toluene/n-hexane ($4 / 1, \mathrm{v} / \mathrm{v}$) mixture. Carbon monoxide was bubbled through the stirred suspenion for 15 min , then the mixture was kept under CO atmosphere for 1 h . The red product IIa, was filtered off and washed with the same mixture of solvents (yield: $0.414 \mathrm{~g}, 94 \%$). The reaction of $\mathrm{Ib}(0.420 \mathrm{~g}, 0.5 \mathrm{mmol})$ was carried out in the same way to give the yellow-orange product IIb (yield: 0.37 g , 94\%).

Reaction of $[R h C l(C O D)]_{2}$ with $R N=C\left(R^{\prime}\right) C(M e)=N R^{\prime \prime}\left(R=R^{\prime \prime}=p-C_{6} H_{4} O M e\right.$; $\left.R^{\prime}=P d(d m t c)\left(P P h_{3}\right)\left(D A B^{I I}\right)\right)$

The ligand DAB ${ }^{\text {II }}(0.385 \mathrm{~g}, 0.5 \mathrm{mmol})$ dissolved in ca. 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with [$\mathrm{RhCl}(\mathrm{COD})]_{2}(0.247 \mathrm{~g}, 0.5 \mathrm{mmol}$; ratio $\mathrm{Pd} / \mathrm{Rh} 1 / 2)$. There was an immediate change of colour from yellow to dark-green. The mixture was worked up as in the case of the reaction with DAB to give a dark-green product (0.370 g), characterized as the binuclear complex Ia, and a brown solid (0.120 g)
identified as an impure sample of $[\mathrm{Rh}(\mathrm{COD})(\mathrm{dmtc})]$ ($\nu(\mathrm{C} \cdots \mathrm{N}) 1545 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture in CDCl_{3} indicated a fast and quantitative formation of the products Ia and [Rh(COD)(dmtc)] in a molar ratio $1 / 1$. An authentic sample of the latter compound was prepared from the reaction of $[\mathrm{RhCl}(\mathrm{COD})]_{2}(0.247 \mathrm{~g}, 0.5 \mathrm{mmol})$ with $\mathrm{Na}[\mathrm{dmtc}] \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.197 \mathrm{~g}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(3 / 1, \mathrm{v} / \mathrm{v})$. After stirring for 1 h the solvents were evaporated to dryness and the solid residue was treated with benzene and charcoal. After filtration, the clear yellow solution was concentrated to small volume and the yellow-brownish product was precipitated by addition of diethyl ether/n-hexane ($1 / 1, \mathrm{v} / \mathrm{v}$). The compound was purified by reprecipitation from the same solvents (yield 0.20 g, 60%). Elemental analysis: Found: C, 39.5; H, 5.4; N, 4.3. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NS}_{2} \mathrm{Rh}: \mathrm{C}, 39.88 ; \mathrm{H}, 5.47 ; \mathrm{N}, 4.23 \%$. Characteristic IR bands: $\nu(\mathrm{C}=\mathrm{N})$ $1543 \mathrm{~s}(\mathrm{br}) ; \nu(\mathrm{Rh}-\mathrm{S}) 369 \mathrm{~m}, 360 \mathrm{~m}$. The ${ }^{1} \mathrm{H}$ NMR spectrum is reported in Table 3.

Reaction of $[R h C l(C O D)]_{2}$ with $R N=C\left(R^{\prime}\right) C(M e)=N R^{\prime \prime}\left(R=R^{\prime \prime}=p-C_{6} H_{4} O M e\right.$; $\left.R^{\prime}=P d C l(d i p h o s)\left(D A B^{\mathrm{III}}\right)\right)$

The reaction of $[\mathrm{RhCl}(\mathrm{COD})]_{2}$ with $\mathrm{DAB}^{\mathrm{III}}(\mathrm{Pd} / \mathrm{Rh}$ ratio $1 / 2)$ was carried out as described for the reaction with DAB. A dark-green product was obtained, the elemental analysis of which approximately corresponded to that of the ionic compound $\left[\mathrm{Rh}(\mathrm{COD})\left(\mathrm{DAB}^{\mathrm{III}}\right)\right]\left[\mathrm{RhCl}_{2}(\mathrm{COD})\right]$. Anal.: (Found): C, 52.5; (53.5); $\mathrm{H}, 4.2,(4.7) ; \mathrm{N}, 2.1,(2.4) ; \mathrm{Cl}, 7.8$, (7.7). Calcd. for $\mathrm{C}_{59} \mathrm{H}_{65} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$ $\mathrm{PdRh}_{2}: \mathrm{C}, 53.9 ; \mathrm{H}, 4.98 ; \mathrm{N}, 2.13, \mathrm{Cl}, 8.09 \%$. No better analytical data were obtained even after several reprecipitations from CHCl_{3} (or $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ mixtures) and diethyl ether.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction in CDCl_{3} indicated a fast and quantitative formation of an cquimolar mixture of the cation $\left[\mathrm{Rh}(\mathrm{COD})\left(\mathrm{DAB}^{\mathrm{III}}\right)\right]^{+}$and
 mixture in methanol [obtained by mixing DAB ${ }^{\text {III }}(0.041 \mathrm{~g}, 0.05 \mathrm{mmol})$ and [$\mathrm{RhCl}(\mathrm{COD})]_{2}(0.024 \mathrm{~g}, 0.05 \mathrm{mmol})$ in 50 ml of MeCH$]$ showed a conductivity of $8.85 \times 10^{-5} \mathrm{ohm}^{-1}$ with a cell constant $K 0.813 \mathrm{~cm}^{-1}$. This corresponds to a molar conduclivily $\Lambda_{M} 72 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ if the reaction quantitatively yields a $10^{-3} \mathrm{M}$ solution of the ionic compound $\left[\mathrm{Rh}(\mathrm{COD})\left(\mathrm{DAB}^{\mathrm{III}}\right)\right]\left[\mathrm{RhCl}_{2}(\mathrm{COD})\right]$. An authentic sample of the anionic complex $\left[\mathrm{RhCl}_{2}(\mathrm{COD})\right]^{-}$as tetraphenylarsonium salt was prepared from the reaction of $[\mathrm{RhCl}(\mathrm{COD})]_{2}(0.161 \mathrm{~g}, 0.33$ $\mathrm{mmol})$ with $\mathrm{AsPh}_{4} \mathrm{Cl}(0.280 \mathrm{~g}, 0.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring for 30 min the mixture was treated with charcoal and filtered. The clear filtrate was concentrated to small volume and the pale-yellow product was precipitated by addition of diethyl ether/n-hexane ($1 / 1, \mathrm{v} / \mathrm{v}$) (yield $0.30 \mathrm{~g}, 68 \%$). Elemental analysis: Found: C, $57.0 ; \mathrm{H}, 4.8 ; \mathrm{Cl}, 10.7$. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{AsCl}_{2} \mathrm{Rh}$: $\mathrm{C}, 57.76$; $\mathrm{H}, 4.85 ; \mathrm{Cl}, 10.66 \%$. Molar conductivity $\Lambda_{\mathrm{M}} 73.2 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ for a $10^{-3} \mathrm{M}$ solution in MeOH at $20^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR spectral data see shown in Table 3.

Reactions of $\left[R h(C l(C O D)]_{2}\right.$ with $R N=C\left(R^{\prime}\right) C(M e)=N R^{\prime \prime}\left(R=R^{\prime \prime}=p-C_{6} H_{4} O M e ;\right.$ $R^{\prime}=P d C l(d i p h o s)\left(D A B^{I I I}\right) ; R^{\prime}=\mathrm{Me}\left(D A B^{\mathrm{IV}}\right)$) and NaClO_{4}

The ligand DAB ${ }^{\text {III }}(0.411 \mathrm{~g}, 0.5 \mathrm{mmol})$ suspended in $\mathrm{MeOH}(20 \mathrm{ml})$ was treated with $[\mathrm{RhCl}(\mathrm{COD})]_{2}(0.123 \mathrm{~g}, 0.25 \mathrm{mmol} ; \mathrm{Pd} / \mathrm{Rh}$ ratio 1/1). The mixture was stirred for 30 min until complete dissolution of the yellow compound

DAB ${ }^{\text {III }}$, then a solution of $\mathrm{NaClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in ca. 5 ml of distilled water was added dropwise. Within 10 min the dark-green product II la began to precipitate. When the precipitation was completed ($30-60 \mathrm{~mm}$), the microcrystalline solid was filtered off and washed with distilled $\mathrm{H}_{2} \mathrm{O}$, then with a mixture $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1 / 2$, v / v), and finally with cold MeOH (yield $0.425 \mathrm{~g}, 75 \%$).

The same procedure was followed for the reaction with $D A B^{I V}$. In this case a longer time was required for the complete dissolution of the ligand (yield of product IIIb 89%).

Reactions of the complexes III with CO

The complex IIIa ($0.566 \mathrm{~g}, 0.5 \mathrm{mmol}$) was suspended in MeOH (10 ml) and carbon monoxide was bubbled through the stirred mixture for 15 min . During this time the dark-green solid dissolved completely to give a dark-red solution from which the product IVa separated as a clark-blue microcrystalline solid. This was filtered off and washed with cold MeOH (yield $0.116 \mathrm{~g}, 77 \%$).

The reaction of IIIb $(0.303 \mathrm{~g}, 0.5 \mathrm{mmol})$ was carried out in the same way to yield the dark-irown product $\operatorname{IVb}(0.216 \mathrm{~g}, 78 \%)$. The carbon monoxide content in complexes IV was determined by the method described by Schrock and Osborn [9], using 1,2-dichloroethane as solvent, instead of 2-butanone. The volume of evolved CO was the 95% of theory for IVa, and the 104% of theory for IVb.

Reactions of $\left[\mathrm{Rr} \mathrm{Cl}(\mathrm{CO})_{2}\right]_{2}$ with $R N=C\left(R^{\prime}\right) C(\mathrm{Me})=N R^{\prime \prime} \quad\left(R^{\prime}=\operatorname{trans}-\mathrm{PdCl}\left(\mathrm{PPh}_{3}\right)_{2}\right.$; $\left.R=R^{\prime \prime}=p-C_{6} H_{4} O M e(D A B) ; R=p-C_{6} H_{4} O M e, R^{\prime \prime}=M e\left(D A B^{1}\right)\right)$
(a) $\mathrm{Pd} / \mathrm{Rh}$ ratio $1 / 2$. The ligand $\mathrm{DAB}(0.474 \mathrm{~g}, 0.5 \mathrm{mmol})$ suspended in toluene (25 ml) was treated with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(0.195 \mathrm{~g}, 0.5 \mathrm{mmol})$. A clear dark-red solution was obtained, from which a red compound began to precipitate after stirring for ca. 30 min . The mixture was left aside for 2 h , then the product Va was filtered off and washed with cold toluene (yield $0.535 \mathrm{~g}, 80 \%$).

The reaction of $\mathrm{DAB}^{\mathrm{I}}(0.443,0.5 \mathrm{mmol})$ with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(0.195 \mathrm{~g} ; 0.5$ $\mathrm{mmol})$ was carried out similarly to give the red-orange product $\mathrm{Vb}(0.53 \mathrm{~g}$, 85\%). In this case a toluene/n-hexane ($4 / 1, \mathrm{v} / \mathrm{v}$) mixture was used as solvent.
(b) $P d / R h$ ratio $1 / 1$. When the reaction of DAB with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ was carried out with a ratio $\mathrm{Pd} / \mathrm{Rh}$ of $1 / 1$, the IR spectrum of the reaction mixture in CHCl_{3} (2 min after mixing of the reactants) showed the immediate formation of $\mathrm{Va}\left[\nu(\mathrm{CO}) 2100,2074,2044,1933 \mathrm{~cm}^{-1}\right]$ and the presence of unreacted $\mathrm{DAB}\left[\nu(\mathrm{C}=\mathrm{N}) 1620,1560 \mathrm{~cm}^{-1}\right]$. On standing, a subsequent slower reaction took place, which in ca. 1 h led to the formation of the complex IIa [$\nu(\mathrm{CO})$ $\left.2093,2036 \mathrm{~cm}^{-1}\right]$ and of a small amount of trans-[RhCl(CO) $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right][\nu(\mathrm{CO})$ $1978 \mathrm{~cm}^{-1}$].

The same reaction in CDCl_{3} was followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The initial spectrum (4 min after mixing of DAB and $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$) indicated the presence of the compounds Va and DAB in a molar ratio $\sim 1 / 1$ [$\delta(\mathrm{C}-\mathrm{Me}) 2.42$ and 1.29 ppm, respectively]. On standing, the complex Va disappeared slowly with the concomitant formation of IIa [$\delta(\mathrm{C}-\mathrm{Me}) 2.96 \mathrm{ppm}]$. At the same time a decrease of DAB concentration was observed. When the reaction was completed (ca. 1 h), the mixture contained the complex IIa as major product, a smaller amount of unreacted DAB and some unidentified minor products, characterized by weak
$\delta(\mathrm{C}-\mathrm{Me})$ and $\delta(\mathrm{O}-\mathrm{Me})$ signals in the ranges $2.7-2.1$ and $3.9-3.5 \mathrm{ppm}$ respectively.

Reaction of Va with PPh_{3}
The complex Va ($0.334 \mathrm{~g}, 0.25 \mathrm{mmol}$) dissolved in 1,2-dichloroethane (10 ml) was treated with PPh_{3} ($0.064 \mathrm{~g}, 0.25 \mathrm{mmol}$). As indicated by IR spectra at various times, a slow reaction occurred yielding the products IIa and trans$\left[\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in ca. 90 min . The mixture was concentrated to small volume (ca. 3 ml) and set aside overnight. Yellow crystals of trans-[$\mathrm{RhCl}(\mathrm{CO})-$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ formed, and were filtered off and identified by elemental analysis and IR spectra [$\nu(\mathrm{CO}) 1965 \mathrm{~cm}^{-1}$ and $\nu(\mathrm{Rh}-\mathrm{Cl}) 311 \mathrm{~cm}^{-1}$].

The ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture in CDCl_{3} (molar ratio $\mathrm{Va} / \mathrm{PPh}_{3}$ $1 / 1$) showed almost quantitative formation of complex Ira when the reaction was complete.

References

[^5]
[^0]: carried out on MeOH solutions $10^{-3} \mathrm{M}$ at $20^{\circ} \mathrm{C}$. ${ }^{d}$ Experimental molecular weight for a solution $3.53 \times 10^{-3} \mathrm{M}$. A value of 951 was found for a solution 1.98×10^{-3}. M. ${ }^{[}$Experimental molecular weight for a solution $4,01 \times 10^{-3} \mathrm{M}$. A value fo 990 was found for a solution $2.26 \times 10^{-3} \mathrm{M}$.

[^1]: * Alternative nomenclature: 1,2-bis(imino)propyl group [3].

[^2]: $\boldsymbol{a}_{\text {The figures in parenthesis refer to }} \mathbf{C H}_{\mathbf{2}} \mathrm{Cl}_{2}$ solutions. ${ }^{\boldsymbol{b}}$ Tentative assignment because of the intense absorptions of the para-substituted phenyl rings around 1600 and $1500 \mathrm{~cm}^{-1} .^{c} \mathrm{M}=P \mathrm{Pd}$ and/or Rh .
 $d^{\text {Another weak }} \boldsymbol{\nu}(\mathrm{CO})$ band is present at $1985 \mathrm{~cm}^{-1}$.

[^3]: * This compound was detected only in solution, where it undergoes reversible dimerisation to chloro-bridged derivatives [14].

[^4]: ${ }^{a}$ Spectra recorded in CDCl3 solution: δ values in Ppm from TMS as internal standard; s singlet, m multiplet, br broad.

[^5]: 1 B. Crociani, M. Nicolini and R.L. Richards, J. Organometal. Chem., 104 (1976) 259.
 2 B. Crociani. Inorg. Chim. Acta, 23 (1977) L1.
 3 B. Crociani, M_ Nicolini and R.L. Richards, J. Chem. Soc. Dalton, (1978) 1478.
 4 B. Crociani and R.L. Richards, J. Organometal. Chem., 154 (1978) 65.
 5 B. Crociani, Mi. Nicolini and A. Mantovani, J. Organometal. Chem., 365.
 6 K. Vrieze, H.C. Volger and A.P. Prat, J. Organometal. Chem., 14 (1968) 185.
 7 G. Zassinovich, A. Camus and G. Mestroni, J. Organometal. Chem., 133 (1977) 377 and references therein.
 8 J. Chatt, and L.M. Venanzi, J. Chem. Soc., (1957) 4735.
 9 R.R. Schrock and J.A. Osborn, J. Amer. Chem. Soc., 93 (1971) 2397.
 10 M.A. Bennett, R.J.H. Clark and D.L. Milner, Inorg. Chem., 9 (1967) 1647.
 11 H. van der Poel, G. van Koten and K. Vrieze, J. Organometal. Chem., 135 (1977) C63.
 12 F. Bonati and G. Minghetti, J. Organometal. Chem., 60 (1973) C43.
 13 G. Minghetti, F. Bonati and G. Banditelli, Inorg. Chem., 15 (1976) 2649.
 14 P. Uguagliati, G. Deganello and U. Belluco. Inorg. Chim. Acta. 9 (1074) 203 and references therein.
 15 R. Ros, M. Lenarda, T. Boschi and R. Roulet, Inorg. Chim. Acta, 25 (1977) 61.
 16 D. Brodzki and G. Pannettier, J. Organometal. Chem.. 104 (1976) 241.
 17 R.W. Balk, D.J. Stufkens and A. Oskam, Inorg. Chim. Acta, 28 (1978) 133.
 18 D. Leibfritz and H. tom Dieck, J. Organometal. Chem., 105 (1976) 255.
 19 H. tom Dieck, K.D. Franz and F. Hohmann, Chem. Ber., 108 (1975) 163 and references therein.
 20 A.L. Balch, J. Amer. Chem. Soc., 98 (1976) 8049.
 21 J.A. McCleverty and G. Wilkinson, Inorg. Synth., 8 (19G6) 211.
 22 H. toin Dieck and I.W. Renk, Chem. Ber., 104 (1971) 92.

